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Abstract—The problem of distributed learning and channel
access is considered in a cognitive network with multiple sec-
ondary users. The availability statistics of the channels are
initially unknown to the secondary users and are estimated using
sensing decisions. There is no explicit information exchange or
prior agreement among the secondary users. We propose policies
for distributed learning and access which achieve order-optimal
cognitive system throughput (number of successful secondary
transmissions) under self play, i.e., when implemented at all the
secondary users. Equivalently, our policies minimize the regret
in distributed learning and access. We first consider the scenario
when the number of secondary users is known to the policy,
and prove that the total regret is logarithmic in the number of
transmission slots. Our distributed learning and access policy
achieves order-optimal regret by comparing to an asymptotic
lower bound for regret under any uniformly-good learning and
access policy. We then consider the case when the number of
secondary users is fixed but unknown, and is estimated through
feedback. We propose a policy in this scenario whose asymptotic
sum regret which grows slightly faster than logarithmic in the
number of transmission slots.

Index Terms—Cognitive medium access control, multi-armed
bandits, distributed algorithms, logarithmic regret.

I. I NTRODUCTION

There has been extensive research on cognitive radio net-
work in the past decade to resolve many challenges not
encountered previously in traditional communication networks
(see [2]). One of the main challenges is to achieve coex-
istence of heterogeneous users accessing the same part of
the spectrum. In a typical cognitive network, there are two
classes of transmitting users, viz., the primary users who have
priority in accessing the spectrum and the secondary users who
opportunistically transmit when the primary user is idle. The
secondary users arecognitive and can sense the spectrum to
detect the presence of a primary transmission. However, due
to resource and hardware constraints, they can sense only a
part of the spectrum at any given time.

We consider a slotted cognitive system where each sec-
ondary user can sense and access only one orthogonal channel
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in each transmission slot (see Fig.1). Under sensing con-
straints, it is thus beneficial for the secondary users to select
channels with higher mean availability, i.e., channels which are
less likely to be occupied by the primary users. However, in
practice, the channel availability statistics are a priori unknown
to the secondary users.

Since the secondary users are required to sense the medium
before transmission, can these sensing decisions be used to
learn the channel availability statistics? If so, using these
estimated channel availabilities, can we design channel access
rules which maximize the transmission throughput? Designing
provably efficient algorithms to accomplish the above goals
forms the focus of our paper. Such algorithms need to be
efficient, both in terms of learning and channel access.

For any learning algorithm, there are two important per-
formance criteria: convergence andregret bounds [3]. In the
above context, we require the estimates to converge to the
correct channel availability statistics as the number of available
sensing decisions goes to infinity. A stronger criterion is the
regret of a learning algorithm, which measures the speed
of convergence. In our context, the regret is the loss in
secondary throughput due to learning compared with knowing
the channel statistics perfectly. Hence, it is desirable for the
learning algorithms to have small regret. The regret is a finer
measure of performance of a learning algorithm than the time-
averaged throughput since a sub-linear regret (with respect to
time) implies optimal average throughput.

Additionally, we consider a distributed framework where
there is no information exchange or prior agreement among
the secondary users. This introduces additional challenges:
it results in loss of throughput due to collisions among the
secondary users, and there is now competition among the
secondary users since they all tend to access channels with
higher availabilities. It is imperative for the channel access
policies to overcome the above challenges. Hence, a distributed
learning and access policy experiences regret both due to
learning of the unknown channel availabilities as well as due
to collisions under distributed access.

A. Our Contributions

The main contributions of this paper are two fold. First,
we propose two distributed learning and access policies for
multiple secondary users in a cognitive network. Second, we
provide performance guarantees for these policies in terms of
regret. Overall, we prove that one of our proposed algorithms
achieves order-optimal regret and the other achieves nearly

http://lanl.arxiv.org/abs/1006.1673v1
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Primary User
Secondary User

Fig. 1. Cognitive radio network withU = 4 secondary users andC = 5
channels. A secondary user is not allowed to transmit if the accessed channel
is occupied by a primary user. If more than one secondary user transmits in
the same free channel, then all the transmissions are unsuccessful.

order-optimal regret, where the order is in terms of the number
of transmission slots.

The first policy we propose assumes that the total number
of secondary users in the system is known while our sec-
ond policy relaxes this requirement. Our second policy also
incorporates estimation of the number of secondary users, in
addition to learning of the channel availabilities and designing
distributed access rules. We provide bounds on total regret
experienced by the secondary users under self play, i.e., when
implemented at all the secondary users. For the first policy, we
prove that the regret is logarithmic, i.e.,O(log n) wheren in
the number of transmission slots. For the second policy, the re-
gret grows slightly faster than logarithmic, i.e.,O(f(n) log n),
where we can choose any functionf(n) satisfyingf(n)→∞,
asn→∞. Hence, we provide performance guarantees for the
proposed distributed learning and access policies.

A lower bound on regret under any uniformly-good dis-
tributed learning policy has been derived in [4], which is also
logarithmic in the number of transmission slots. Thus, our first
policy (which requires knowledge of the number of secondary
users) achieves order-optimal regret. The effects of the number
of secondary users and the number of channels on regret are
also explicitly characterized and verified via simulations.

To the best of our knowledge, theexploration-exploitation
tradeoff for learning, combined with thecooperation-
competition tradeoffs among multiple users for distributed
medium access have not been sufficiently examined in the
literature before (see Section I-B for a discussion). Our
analysis in this paper provides important engineering insights
towards dealing with learning, competition, and cooperation
in practical cognitive systems.

Remark: We note some of the shortcomings of our approach.
The i.i.d. model1 for primary transmissions is indeed idealistic
and in practice, a Markovian model may be more appropriate
[5], [6]. However, the i.i.d. model is a good approximation if
the time slots for transmissions are long and/or the primary
traffic is highly bursty. Moreover, the i.i.d. model is not crucial
towards deriving regret bounds for our proposed schemes.

1By i.i.d. primary transmission model, we do not mean the presence of
a single primary user, but rather, this model is used to capture the overall
statistical behavior of all the primary users in the system.

Extensions of the classical multi-armed bandit problem to
a Markovian model are considered in [7]. In principle, our
results on distributed learning and access can be similarly
extended to a Markovian channel model but this entails more
complex estimators and rules for evaluating the exploration-
exploitation tradeoffs of different channels and is a topic of
interest for future investigation.

B. Related Work

Several results on the multi-armed bandit problem will be
used and generalized to study our problem. Detailed discussion
on multi-armed bandits can be found in [8]–[11]. Cognitive
medium access is a topic of extensive research; see [12]
for an overview. The connection between cognitive medium
access and the multi-armed bandit problem is explored in [13],
where a restless bandit formulation is employed. Under this
formulation, indexability is established, the Whittle’s index
for channel selection is obtained in closed-form, and the
equivalence between the myopic policy and the Whittle’s
index is established. However, this work assumes known
channel availability statistics and does not consider competing
secondary users. The work in [14] considers allocation of two
users to two channels under Markovian channel model using
a partially observable Markov decision process (POMDP)
framework. The use of collision feedback information for
learning, and spatial heterogeneity in spectrum opportunities
were investigated. However, the difference from our work
is that [14] assumes that the availability statistics (transition
probabilities) of the channels are known to the secondary users
while we consider learning of unknown channel statistics.
The works in [15], [16] consider centralized access schemes
in contrast to distributed access here, [17] considers access
through information exchange and studies the optimal choice
of the amount of information to be exchanged given the
cost of negotiation. [18] considers access underQ-learning
for two users and two channels where users can sense both
the channels simultaneously. The work in [19] discusses a
game-theoretic approach to cognitive medium access. In [20],
learning in congestion games through multiplicative updates
is considered and convergence to weakly-stable equilibria
(which reduces to the pure Nash equilibrium for almost all
games) is proven. However, the work assumes fixed costs (or
equivalently rewards) in contrast to random rewards here, and
that the players can fully observe the actions of other players.

Recently, the work in [21] considers combinatorial bandits,
where a more general model of different (unknown) channel
availabilities is assumed for different secondary users, and a
matching algorithm is proposed for jointly allocating users
to channels. The algorithm is guaranteed to have logarithmic
regret with respect to number of transmission slots and poly-
nomial storage requirements. A decentralized implementation
of the proposed algorithm is proposed but it still requires
information exchange and coordination among the users. In
contrast, we propose algorithms which removes this require-
ment albeit in a more restrictive setting.

In our recent work [1], we first formulated the problem
of decentralized learning and access for multiple secondary
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users. We considered two scenarios: one where there is initial
common information among the secondary users in the form of
pre-allocated ranks, and the other where no such information
is available. In this paper, we analyze the distributed policy in
detail and prove that it has logarithmic regret. In addition, we
also consider the case when the number of secondary users is
unknown, and provide bounds on regret in this scenario.

Recently, Liu and Zhao [4] proposed a family of distributed
learning and access policies known as time-division fair share
(TDFS), and proved logarithmic regret for these policies. They
established a lower bound on the growth rate of system regret
for a general class of uniformly-good decentralized polices.
The TDFS policies in [4] can incorporate any order-optimal
single-player policy while our work here is based on the
single-user policy proposed in [11]. Another difference is that
in [4], the users orthogonalize via settling at different offsets
in their time-sharing schedule, while in our work here, users
orthogonalize into different channels. Moreover, the TDFS
policies ensure that each player achieves the same time-
average reward while our policies here achieve probabilistic
fairness, in the sense that the policies do not discriminate be-
tween different users. In [22], the TDFS policies are extended
to incorporate imperfect sensing.

Organization & Suggested Reading: Section II deals with
the system model, Section III deals with the special case of
single secondary user and of multiple users with centralized
access which can be directly solved using the classical results
on multi-armed bandits. In Section IV, we propose distributed
learning and access policy with provably logarithmic regret
when the number of secondary users is known. Section V
considers the scenario when the number of secondary users is
unknown. Section VI provides a lower bound for distributed
learning. Section VII has simulation results for the proposed
schemes and Section VIII concludes the paper. Most of the
proofs are found in the Appendix.

Since Section III mostly deals with a recap of the classical
results on multi-armed bandits, we suggest that an experienced
reader directly jump to Section IV for the main results of this
paper.

II. SYSTEM MODEL & FORMULATION

Notation: For any two functionsf(n), g(n), f(n) =
O(g(n)) if there exists a constantc such thatf(n) ≤ cg(n)
for all n ≥ n0 for a fixedn0 ∈ N. Similarly, f(n) = Ω(g(n))
if there exists a constantc′ such thatf(n) ≥ c′g(n) for all
n ≥ n0 for a fixedn0 ∈ N, andf(n) = Θ(g(n)) if f(n) =
Ω(g(n)) and f(n) = O(g(n)). Also, f(n) = o(g(n)) when
f(n)/g(n)→ 0 andf(n) = ω(g(n)) whenf(n)/g(n)→ ∞
asn→∞.

We refer to theU highest entries in a vectorµ as theU -best
channels and the rest as theU -worst channels. Letσ(T ;µ)
denote the index of theT th highest entry inµ. Alternatively,
we abbreviateT ∗:=σ(T ;µ) for ease of notation. With abuse of
notation, letD(µ1, µ2):=D(B(µ1);B(µ2)) be the Kullback-
Leibler distance between the Bernoulli distributionsB(µ1) and
B(µ2) [23] and let∆(1, 2):=µ1 − µ2.

A. Sensing & Channel Models

Let U ≥ 1 be the number of secondary users2 andC ≥ U
be the number3 of orthogonal channels available for slotted
transmissions with a fixed slot width. In each channeli and slot
k, the primary user transmits i.i.d. with probability1−µi > 0.
In other words, letWi(k) denote the indicator variable if the
channel is free

Wi(k) =

{
0, channeli occupied in slotk

1, o.w,

and we assume thatWi(k)
i.i.d.
∼ B(µi).

The mean availability vectorµ consists of mean avail-
abilities µi of all channels, i.e., isµ:=[µ1, . . . , µC ], where
all µi ∈ (0, 1) and are distinct.µ is initially unknown
to all the secondary users and is learntindependently over
time using the past sensing decisions without any information
exchange among the users. We assume that sensing for primary
transmissions is perfect at all the users.

Let Ti,j(k) denote the number of slots where channeli is
sensed ink slots by userj (not necessarily being the sole
occupant of that channel). The sensing variables are obtained
as follows: at the beginning of each slotk, each secondary
userj ∈ U selects exactly one channeli ∈ C for sensing, and
hence, obtains the value ofWi(k), indicating if the channel is
free. Userj then records all the sensing decisions of each
channel i in a vector Xk

i,j :=[Xi,j(1), . . . , Xi,j(Ti,j(k))]
T .

Hence,∪Ci=1X
k
i,j is the collection of sensed decisions for user

j in k slots for all theC channels.
We assume the collision model under which if two or more

users transmit in the same channel then none of the transmis-
sions go through. At the end of each slotk, each userj receives
acknowledgementZj(k) on whether its transmission in thekth

slot was received. Hence, in general, any policy employed by
userj in the(k+1)-th slot, given byρ(∪Ci=1X

k
i,j ,Z

k
j ) is based

on all the previous sensing and feedback results.

B. Regret of a Policy

Under the above model, we are interested in designing
policiesρ which maximize the expected number of successful
transmissions of the secondary users subject to the non-
interference constraint for the primary users. LetS(n;µ, U, ρ)
be the expected total number of successful transmissions after
n slots underU number of secondary users and policyρ.

In the ideal scenario where the availability statisticsµ are
known a priori and a central agent orthogonally allocates the
secondary users to theU -best channels, the expected number
of successful transmissions aftern slots is given by

S∗(n;µ, U):=n

U∑

j=1

µ(j∗), (1)

wherej∗ is the j th-highest entry inµ.

2A user refers to a secondary user unless otherwise mentioned.
3When U ≥ C, learning availability statistics is less crucial, since all

channels need to be accessed to avoid collisions. In this case, design of
medium access is more crucial.
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Algorithm 1 Single User Policyρ1(g(n)) in [10].

Input: {X̄i(n)}i=1,...,C : Sample-mean availabilities aftern
rounds,g(i;n): statistic based on̄Xi,j(n),
σ(T ;g(n)): index ofT th highest entry ing(n).
Init: Sense in each channel once,n← C
Loop: n← n+ 1
Curr_Sel← channel corresponding to highest entry ing(n)
for sensing. If free, transmit.

It is clear thatS∗(n;µ, U) > S(n;µ, U, ρ) for any policy
ρ and finiten. We are interested in minimizing theregret in
learning and access, given by

R(n;µ, U, ρ):=S∗(n;µ, U)− S(n;µ, U, ρ) > 0. (2)

We are interested in minimizing regret under any givenµ ∈
(0, 1)C with distinct elements.

By incorporating the collision channel model assumption
with no avoidance mechanisms4, the expected throughput
under policyρ is given by

S(n;µ, U, ρ) =

C∑

i=1

U∑

j=1

µ(i)E[Vi,j(n)],

whereVi,j(n) is the number of times inn slots where user
j is the sole user to sense channeli. Hence, the regret in (2)
simplifies as

R(n; ρ) =
U∑

k=1

nµ(k∗)−
C∑

i=1

U∑

j=1

µ(i)E[Vi,j(n)]. (3)

III. SPECIAL CASESFROM KNOWN RESULTS

We recap the bounds for the regret under the special cases
of a single secondary user(U = 1) and multiple users with
centralized learning and access by appealing to the classical
results on the multi-armed bandit process [8]–[10].

A. Single Secondary User (U = 1)

When there is only one secondary user, the problem of
finding policies with minimum regret reduces to that of a
multi-armed bandit process. Lai and Robbins [8] first analyzed
schemes for multi-armed bandits with asymptotic logarithmic
regret based on the upper confidence bounds on the unknown
channel availabilities. Since then, simpler schemes have been
proposed in [10], [11] which compute a statistic or an index for
each arm (channel), henceforth referred to as theg-statistic,
based only on its sample mean and the number of slots where
the particular arm is sensed. The arm with the highest index is
selected in each slot in these works. We summarize the policy
in Algorithm 1 and denote itρ1(g(n)), whereg(n) is the
vector of scores assigned to the channels aftern transmission
slots.

4The effect of employing CSMA-CA is not considered here although it
can be shown that it reduces the regret and hence, the bounds we derive are
applicable.

The sample-mean based policy in [11, Thm. 1] proposes an
index for each channeli and userj at timen is given by

gMEAN
j (i;n):=X̄i,j(Ti,j(n)) +

√
2 logn

Ti,j(n)
, (4)

where Ti,j(n) is the number of slots where userj selects
channeli for sensing and

X̄i,j(Ti,j(n)):=

Ti,j(n)∑

k=1

Xi,j(k)

Ti,j(n)

is the sample-mean availability of channeli, as sensed by user
j.

The statistic in (4) captures theexploration-exploitation
tradeoff between sensing the channel with the best predicted
availability to maximize immediate throughput and sensing
different channels to obtain improved estimates of their avail-
abilities. The sample-mean term in (4) corresponds to exploita-
tion while the other term involvingTi,j(n) corresponds to
exploration since it penalizes channels which are not sensed
often. The normalization of the exploration term withlogn in
(4) implies that the term is significant whenTi,j(n) is much
smaller thanlog n. On the other hand, if all the channels
are sensedΘ(logn) number of times, the exploration terms
become unimportant in theg-statistics of the channels and the
exploitation term dominates, thereby, favoring sensing of the
channel with the highest sample mean.

The regret based on the above statistic in (4) is logarithmic
for any finite number of slotsn but does not have the optimal
scaling constant. The sample-mean based statistic in [10,
Example 5.7] leads to the optimal scaling constant for regret
and is given by

gOPT
j (i;n):=X̄i,j(Ti,j(n)) + min

[√
logn

2Ti,j(n)
, 1

]
. (5)

In this paper, we design policies based on thegMEAN statistic
since it is simpler to analyze than thegOPT statistic.

We now recap the results which show logarithmic regret in
learning the best channel. In this context, we defineuniformly
good policiesρ [8] as those with regret

R(n;µ, U, ρ) = o(nα), ∀α > 0,µ ∈ (0, 1)C . (6)

Theorem 1 (Logarithmic Regret for U = 1 [10], [11]):
For any uniformly good policyρ satisfying (6), the expected
time spent in any suboptimal channeli 6= 1∗ satisfies

lim
n→∞

P

[
Ti,1(n) ≥

(1− ǫ) logn

D(µi, µ1∗)
;µ

]
= 1, (7)

where1∗ is the channel with the best availability. Hence, the
regret satisfies

lim inf
n→∞

R(n;µ, 1, ρ)

logn
≥

∑

i∈1-worst

∆(1∗, i)

D(µi, µ1∗)
. (8)

The regret under thegOPT statistic in (5) achieves the above
bound.

lim
n→∞

R(n;µ, 1, ρ1(gOPT
j ))

log n
=

∑

i∈1-worst

∆(1∗, i)

D(µi, µ1∗)
. (9)
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Algorithm 2 Centralized Learning PolicyρCENT in [9].

Input: Xn := ∪Uj=1 ∪
C
i=1 X

n
i,j : Channel availability aftern

slots,g(n): statistic based onXn,
σ(T ;g(n)): index ofT th highest entry ing(n).
Init: Sense in each channel once,n← C
Loop: n← n+ 1
Curr_Sel ← channels withU -best entries ing(n). If free,
transmit.

The regret undergMEAN statistic in (34) satisfies

R(n;µ, 1, ρ1(gMEAN
j )) ≤

∑

i6=1∗

∆(1∗, i)

[
8 logn

∆(j∗, i)2
+ 1 +

π2

3

]
.

B. Centralized Learning & Access for Multiple Users

We now consider multiple secondary users under centralized
access policies where there is joint learning and access by a
central agent on behalf of all theU users. Here, to minimize
the sum regret, the centralized policy allocates theU users to
orthogonal channels to avoid collisions. LetρCENT(X k), with
X k := ∪Uj=1 ∪

C
i=1 Xk

i,j , denote a centralized policy based
on the sensing variables of all the users. The policy under
centralized learning is a simple generalization of the single-
user policy and is given in Algorithm 2. We now recap the
results of [9].

Theorem 2 (Regret Under Centralized Policy ρCENT [9]):
For any uniformly good centralized policyρCENT satisfying
(6), the expected times spent in aU -worst channeli satisfies

lim
n→∞

P




U∑

j=1

Ti,j(n) ≥
(1− ǫ) logn

D(µi, µU∗)
;µ


 = 1, (10)

whereU∗ is the channel with theU th best availability. Hence,
the regret satisfies

lim inf
n→∞

R(n;µ, 1, ρCENT)

logn
≥

∑

i∈U-worst

∆(U∗, i)

D(µi, µU∗)
. (11)

The scheme in Algorithm 2 based ongOPT achieves the above
bound.

lim
n→∞

R(n;µ, 1, ρCENT(gOPT)

logn
=

∑

i∈U-worst

∆(U∗, i)

D(µi, µU∗)
. (12)

The scheme in Algorithm 2 based on thegMEAN satisfies for
anyn > 0,

R(n;µ, U, ρCENT(gMEAN))

≤

U∑

m=1

∑

i∈U-worst

U∑

k=1

∆(m∗, i)

U

[
8 logn

∆(m∗, i)2
+ 1 +

π2

3

]
.

(13)

Proof: See Appendix A. 2

IV. M AIN RESULTS

Armed with the classical results on multi-armed bandits, we
now design distributed learning and allocation policies.

A. Preliminaries: Bounds on Regret

We first provide simple bounds on the regret in (3) for any
distributed learning and access policyρ.

Proposition 1 (Lower and Upper Bounds on Regret): The
regret under any distributed policyρ satisfies

R(n; ρ) ≥
U∑

j=1

∑

i∈U-worst

∆(U∗, i)E[Ti,j(n)], (14)

R(n; ρ) ≤µ(1∗)




U∑

j=1

∑

i∈U-worst

E[Ti,j(n)] + E[M(n)]


, (15)

where Ti,j(n) is the number of slots where userj selects
channeli for sensing,M(n) is the number of collisions faced
by the users in theU -best channels inn slots,∆(i, j) = µ(i)−
µ(j) andµ(1∗) is the highest mean availability.
Proof: See Appendix B. 2

In the subsequent sections, we propose distributed learning
and access policies and provide regret guarantees for the
policies using the upper bound in (15). The lower bound in
(14) can be used to derive lower bound on regret for any
uniformly-good policy.

The first term in (15) represents the lost transmission
opportunities due to selection ofU -worst channels (with
lower mean availabilities), while the second term represents
performance loss due to collisions among the users in the
U -best channels. The first term in (15) decouples among the
different users and can be analyzed solely through the marginal
distributions of theg-statistics at the users. This in turn, can
be analyzed by manipulating the classical results on multi-
armed bandits [10], [11]. On the other hand, the second term
in (15), involving collisions in theU -best channels, requires
the joint distribution of theg-statistics at different users which
are correlated variables. This is intractable to analyze directly
and we develop techniques to bound this term.

B. ρRAND : Distributed Learning and Access

We present theρRAND policy in Algorithm 3. Before de-
scribing this policy, we make some simple observations. If
each user implemented the single-user policy in Algorithm 1,
then it would result in collisions, since all the users target
the best channel. When there are multiple users and there
is no direct communication among them, the users need to
randomize channel access in order to avoid collisions. At
the same time, accessing theU -worst channels needs to be
avoided since they contribute to regret. Hence, users can avoid
collisions by randomizing access over theU -best channels,
based on their estimates of the channel ranks. However, if the
users randomize in every slot, there is a finite probability of
collisions in every slot and this results in a linear growth of
regret with the number of time slots. Hence, the users need
to converge to a collision-free configuration to ensure that the
regret is logarithmic.

In Algorithm 3, there is adaptive randomization based
on feedback regarding the previous transmission. Each user
randomizesonly if there is a collision in the previous slot;
otherwise, the previously generated random rank for the user
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Algorithm 3 Policy ρRAND(U,C,gj(n)) for each userj under
U users,C channels and statisticgj(n).

Input: {X̄i,j(n)}i=1,...,C : Sample-mean availabilities at
user j after n rounds,gj(i;n): statistic based onX̄i,j(n),
σ(T ;gj(n)): index of T th highest entry ingj(n).
ζj(i;n): indicator of collision atnth slot at channeli
Init: Sense in each channel once,n ← C, Curr_Rank ← 1,
ζj(i;m)←0
Loop: n← n+ 1
if ζj(Curr_Sel;n− 1) = 1 then
Draw a newCurr_Rank ∼ Unif(U)
end if
Select channel for sensing. If free, transmit.
Curr_Sel← σ(Curr_Rank;gj(n)).
If collision ζj(Curr_Sel;m)← 1, Else 0.

is retained. The estimation for the channel ranks is through
the g-statistic, on lines similar to the single-user case.

C. Regret Bounds under ρRAND

It is easy to see that theρRAND policy ensures that the
users are allocated orthogonally to theU -best channels as
the number of transmission slots goes to infinity. The regret
bounds onρRAND are however not immediately clear and we
provide guarantees below.

We first provide a logarithmic upper bound5 on the number
of slots spent by each user in anyU -worst channel. Hence, the
first term in the bound on regret in (15) is also logarithmic.

Lemma 1 (Time Spent in U -worst Channels): Under the
ρRAND scheme in Algorithm 3, the total time spent by any user
j = 1, . . . , U , in any i ∈ U -worst channel is given by

E[Ti,j(n)] ≤

U∑

k=1

[ 8 logn

∆(i, k∗)2
+ 1 +

π2

3

]
. (16)

Proof: The proof is on lines similar to the proof for
Theorem 2, given in Appendix A. 2

We now focus on analyzing the number of collisionsM(n)
in theU -best channels. We first give a result on the expected
number of collisions in the ideal scenario where each user has
perfect knowledge of the channel availability statisticsµ. In
this case, the users attempt to reach an orthogonal (collision-
free) configuration by uniformly randomizing over theU -best
channels.

The stochastic process in this case is a finite-state Markov
chain. A state in this Markov chain corresponds to a con-
figuration ofU number of (identical) users inU number of
channels. The number of states in the Markov chain is the
number ofcompositions of U , given by

(
2U−1

U

)
[24, Thm. 5.1].

The orthogonal configuration corresponds to the absorbing
state. For any other state, consisting of more than one user
or no user in any of the channels, the transition probability
to any state of the Markov chain (including self transition

5Note that the bound onE[Ti,j(n)] in (16) holds for userj even if the
other users are using a policy other thanρRAND. But on the other hand, to
analyze the number of collisionsE[M(n)] in (19), we need every user to
implementρRAND.

probability) is uniform. For a state, where certain channels
have exactly one user, there are only transitions to states which
consist of at least one user in that channel and the transition
probabilities are uniform. LetΥ(U,U) denote the maximum
time to absorption in the above Markov chain starting from
any initial distribution. We have the following result

Lemma 2 (# of Collisions Under Perfect Knowledge):
The expected number of collisions underρRAND scheme in
Algorithm 3, assuming that each user has perfect knowledge
of the mean channel availabilitiesµ, is given by

E[M(n); ρRAND(U,C,µ)] ≤ UE[Υ(U,U)]

≤ U

[(
2U − 1

U

)
−1

]
. (17)

Proof: See Appendix C. 2

The above result states that there is at most a finite number
of expected collisions, bounded byUE[Υ(U,U)] under perfect
knowledge ofµ. In contrast, recall from the previous section,
that there are no collisions under perfect knowledge ofµ

in the presence of pre-allocated ranks. Hence,UE[Υ(U,U)]
represents a bound on the additional regret due to the lack
of direct communication among the users to negotiate their
ranks.

We use the result of Lemma 2 for analyzing the num-
ber of collisions under distributed learning of the unknown
availabilities µ as follows: if we show that the users are
able to learn the correct order of the different channels with
only logarithmic regret then only an additional finite expected
number of collisions occur before reaching an orthogonal
configuration.

DefineT ′(n; ρRAND) as the number of slots where any one
of the top-U estimated ranks of the channels at some user is
wrong underρRAND policy. Below we prove that its expected
value is logarithmic in the number of transmissions.

Lemma 3 (Wrong Order of g-statistics): Under the ρRAND

scheme in Algorithm 3,

E[T ′(n; ρRAND)] ≤ U
U∑

a=1

C∑

b=a+1

[
8 logn

∆(a∗, b∗)2
+1+

π2

3

]
. (18)

Proof: See Appendix D. 2

We now provide an upper bound on the number of collisions
M(n) in theU -best channels by incorporating the above result
on E[T ′(n)], the result on the average number of slotsE[Ti,j ]
spent in theU -worst channels in Lemma 1 and the average
number of collisionsUE[Υ(U,U)] under perfect knowledge
of µ in Lemma 2.

Theorem 3 (Logarithmic Number of Collisions Under ρRAND):
The expected number of collisions in theU -best channels
underρRAND(U,C,gMEAN) scheme satisfies

E[M(n)] ≤ U(E[Υ(U,U)] + 1)E[T ′
j(n)]. (19)

Hence, from (16), (18) and (17),M(n) = O(log n).
Proof: See Appendix E. 2

Hence, there are only logarithmic number of expected
collisions before the users settle in the orthogonal channels.
Combining this result with Lemma 1 that the number of
slots spent in theU -worst channels is also logarithmic, we
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immediately have one of the main results of this paper that the
sum regret under distributed learning and access is logarithmic.

Theorem 4 (Logarithmic Regret Under ρRAND): The policy
ρRAND(U,C,gMEAN) in Algorithm 3 hasΘ(logn) regret.
Proof: Substituting (19) and (16) in (15). 2

Hence, we prove that distributed learning and channel access
among multiple secondary users is possible with logarithmic
regret without any explicit communication among the users.
This implies that the number of lost opportunities for success-
ful transmissions at all secondary users is only logarithmic in
the number of transmissions, which is negligible when there
are large number of transmissions.

We have so far focused on designing schemes that maximize
system or social throughput. We now briefly discuss the
fairness for an individual user underρRAND. SinceρRAND does
not distinguish any of the users, in the sense that each user
has equal probability of “settling" down in one of theU -
best channels while experiencing only logarithmic regret in
doing so. Simulations in Section VII (in Fig.4) demonstrate
this phenomenon.

V. D ISTRIBUTED LEARNING AND ACCESS UNDER

UNKNOWN NUMBER OF USERS

We have so far assumed that the number of secondary
users is known, and is required for the implementation of
the ρRAND policy. In practice, this entails initial announcement
from each of the secondary users to indicate their presence in
the cognitive network. However, in a truly distributed setting
without any information exchange among the users, such an
announcement may not be possible.

In this section, we consider the scenario, where the number
of usersU is unknown (but fixed throughout the duration of
transmissions andU ≤ C, the number of channels). In this
case, the policy needs to estimate the number of secondary
users in the system, in addition to learning the channel
availability statistics and designing channel access rules based
on collision feedback. Note that if the policy assumed the
worst-case scenario thatU = C, then the regret grows linearly
sinceU -worst channels are selected a large number of times
for sensing.

A. Description of ρEST Policy

We now propose a policyρEST in Algorithm 4. This policy
incorporates two functions in each transmission slot, viz.,
execution of theρRAND policy in Algorithm 3, based on the
current estimate of the number of usersÛ , and updating of
the estimatêU based on the number of collisions experienced
by the user.

The updating is based on the idea that if there is under-
estimation ofU at all the users (̂Uj < U at all the usersj),
collisions necessarily build up and the collision count serves
as a criterion for incrementinĝU . This is because after a long
learning period, the users learn the true ranks of the channels,
and target the same set of channels. However, when there is
under-estimation, the number of users exceeds the number of
channels targeted by the users. Hence, collisions among the

Algorithm 4 Policy ρEST(n,C,gj(m), ξ) for each userj under
n transmission slots (horizon length),C channels, statistic
gj(m) and threshold functionsξ.

1) Input: {X̄i,j(n)}i=1,...,C : Sample-mean availabilities
at userj, gj(i;n): statistic based on̄Xi,j(n),
σ(T ;gj(n)): index ofT th highest entry ingj(n).
ζj(i;n): indicator of collision atnth slot at channeli
Û : current estimate of the number of users.
n: horizon (total number of slots for transmission)

2) Init: Sense each channel once,m← C, Curr_Rank←
1, Û←1, ζj(i;m)←0 for all i = 1, . . . , C

3) Loop:m← m+ 1, stop whenm = n.
4) If ζj(Curr_Sel;m− 1) = 1 then

Draw a newCurr_Rank ∼ Unif(Û). end if
Select channel for sensing. If free, transmit.
Curr_Sel← σ(Curr_Rank;gj(m))

5) ζj(Curr_Sel;m)← 1 if collision, 0 o.w.

6) If
∑m

a=1

∑Û

k=1 ζj(σ(k;gj(m)); a) > ξ(n; Û)) then
Û ← Û + 1, ζj(i; a) ← 0, i = 1, . . . C, a = 1, . . . ,m.
end if

users accumulate, and can be used as a test for incrementing
Û .

Denote the collision count used byρEST policy as

Φk,j(m) :=

m∑

a=1

k∑

b=1

ζj(σ(b;gj(m)); a). (20)

which is the total number of collisions experienced by userj
so far (till themth transmission slot) in the top-̂Uj channels,
where the ranks of the channels are estimated using theg-
statistics. The collision count is tested against a threshold
ξ(n; Ûj), which is a function of the horizon length6 and
current estimatêUj. When the threshold is exceeded,Ûj is
incremented, and the collision samples collected so far are
discarded (by setting them to zero) (line 6 in Algorithm 4).

B. Regret Bounds under ρEST

We analyze regret bounds under theρEST policy, where the
regret is defined in (3). Let the maximum threshold function
for the number of consecutive collisions underρEST policy be
denoted by

ξ∗(n;U):= max
k=1,...,U

ξ(n; k). (21)

We prove that theρEST policy hasO(ξ∗(n;U)) regret when
ξ∗(n;U) = ω(logn), and wheren is the number of transmis-
sion slots.

The proof for the regret bound underρEST policy consists
of two main parts: we prove bounds on regret conditioned on
the event that none of the users over-estimateU . Second, we
show that the probability of over-estimation at any of the users

6In this section, we assume that the users are aware of the horizon length
n for transmission. Note that this is not a limitation and can be extended
to case of unknown horizon length as follows: implement the algorithm by
fixing horizon lengths ton0, 2n0, 4n0 . . . for a fixedn0 ∈ N and discarding
estimates from previous stages.
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goes to zero asymptotically. Combined together, we obtain the
regret bound forρEST policy.

Note that in order to have small regret, it is crucial that
none of the users over-estimateU . This is because when there
is over-estimation, there is a finite probability of selecting
the U -worst channels even upon learning the true ranks of
the channels. Note that regret is incurred whenever a U-worst
channel is selected since under perfect knowledge this channel
would not be selected. Hence, under over-estimation, the regret
grows linearly in the number of transmissions.

In a nutshell, under theρEST policy, the decision to increment
the estimateÛ reduces to a hypothesis-testing problem with
hypothesesH0: number of users is less than or equal to the
current estimate andH1: number of users is greater than
the current estimate. In order to have a sub-linear regret,
the false-alarm probability (decidingH1 underH0) needs to
decay asymptotically. This is ensured by selecting appropriate
thresholdsξ(n) to test against the collision counts obtained
through feedback.

Conditional Regret: We now give the result for the first
part. Define the “good event”C(n;U) that none of the users
over-estimatesU underρEST as

C(n;U):={

U⋂

j=1

Û EST
j (n) ≤ U}. (22)

The regret conditioned on C(n;U), denoted by
R(n;µ, U, ρEST)|C(n;U), is given by

n
U∑

k=1

µ(k∗)−
C∑

i=1

U∑

j=1

µ(i)E[Vi,j(n)|C(n;U)],

whereVi,j(n) is the number of times that userj is the sole
user of channeli. Similarly, we have conditional expectations
of E[Ti,j(n)|C(n;U)] and of the number of collisions inU -
best channels, given byE[M(n)|C(n;U)]. We now show that
the regret conditioned onC(n;U) is O(max(ξ∗(n;U), logn)).

Lemma 4: (Conditional Regret): When all theU secondary
users implementρEST policy, we have for alli ∈ U -worst
channel and each userj = 1, . . . , U ,

E[Ti,j(n)|C(n)] ≤
U∑

k=1

[
8 logn

∆(i, k∗)2
+ 1 +

π2

3

]
. (23)

The conditional expectation on number of collisionsM(n) in
theU -best channel satisfies

E[M(n)|C(n;U)] ≤ U

U∑

k=1

ξ(n; k) ≤ U2ξ∗(n;U). (24)

From (15), we haveR(n)|C(n;U) is O(max(ξ∗(n;U), logn))
for anyn ∈ N.
Proof: See Appendix F. 2

Probability of Over-estimation: We now prove that none
of the users over-estimates7 U under ρEST policy, i.e., the
probability of the eventC(n;U) in (22) approaches one as

7Note thatρEST policy automatically ensures that all the users do not
under-estimateU , since it incrementŝU based on collision estimate. This
implies that the probability of the event that all the users under-estimateU
goes to zero asymptotically.

n → ∞, when the thresholdsξ(n; Û) for testing against
the collision count are chosen appropriately (see line 6 in
Algorithm 4). Trivially, we can setξ(n; 1) = 1 since a single
collision is enough to indicate that there is more than one user.
For any otherk > 1, we choose functionsξ satisfying

ξ(n; k) = ω(logn), ∀k > 1. (25)

We prove that the above condition ensures that over-estimation
does not occur.

Recall thatT ′(n; ρEST) is the number of slots where any one
of the top-U estimated ranks of the channels at some user is
wrong underρEST policy. We show thatE[T ′(n)] is O(log n).

Lemma 5 (Time spent with wrong estimates): The
expected number of slots where any of the top-U estimated
ranks of the channels at any user is wrong underρEST policy
satisfies

E[T ′(n)] ≤ U
U∑

a=1

C∑

b=a+1

[
8 logn

∆(a∗, b∗)2
+1+

π2

3

]
. (26)

Proof: The proof is on the lines of Lemma 3 2

Recall the definition ofΥ(U,U) in the previous section,
as the maximum time to absorption starting from any initial
distribution of the finite-state Markov chain, where the states
correspond to different user configurations and the absorbing
state corresponds to the collision-free configuration. We now
generalize the definition toΥ(U, k), as the time to absorption
in a new Markov chain, where the state space is the set of
configurations ofU users ink channels, and the transition
probabilities are defined on similar lines. Note thatΥ(U, k)
is almost-surely finite whenk ≥ U and∞ otherwise (since
there is no absorbing state in the latter case).

We now bound the maximum value of the collision count
Φk,j(m) underρEST policy in (20) usingT ′(m), the total time
spent with wrong channel estimates, andΥ(U, k), the time to

absorption in the Markov chain. Let
st

≤ denote the stochastic
order for two random variables [25].

Proposition 2: The maximum collision count in (20) over
all users under theρEST policy satisfies

max
j=1,...,U

Φk,j(m)
st

≤ (T ′(m) + 1)Υ(U, k), ∀m ∈ N. (27)

Proof: The proof is on the lines of Theorem 3. See Ap-
pendix G. 2

We now prove that the probability of over-estimation goes
to zero asymptotically.

Lemma 6 (No Over-estimation Under ρEST): For threshold
functions satisfying (25), the eventC(n;U) in (22) satisfies

lim
n→∞

P[C(n;U)] = 1, (28)

and hence, none of the users over-estimatesU under ρEST

policy.
Proof: See Appendix H. 2

We now give the main result of this section thatρEST has
slightly more than logarithmic regret asymptotically and this
depends on the threshold functionξ∗(n;U) in (21).
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Theorem 5 (Asymptotic Regret Under ρEST): With threshold
functions ξ satisfying conditions in (25), the policy
ρEST(n,C,gj(m), ξ) in Algorithm 4 satisfies

lim sup
n→∞

R(n;µ, U, ρEST)

ξ∗(n;U)
<∞. (29)

Proof: From Lemma 4 and Lemma 6. 2

Hence, the regret under the proposedρEST policy is
O(ξ∗(n;U)) under fully decentralized setting without the
knowledge of number of users whenξ∗(n;U) = ω(logn).
Hence,O(f(n) logn) regret is achievable for all functions
f(n) → ∞ asn → ∞. The question of whether logarithmic
regret is possible under unknown number of users is of interest.

Note the difference betweenρEST policy in Algorithm 4
under unknown number of users withρRAND policy with known
number of users in Algorithm 3. The regret underρEST is
O(f(n) log n) for any function f(n) = ω(1), while it is
O(log n) underρRAND policy. Hence, we are able to quantify
the degradation of performance when the number of users is
unknown.

VI. L OWER BOUND & EFFECT OFNUMBER OF USERS

A. Lower Bound For Distributed Learning & access

We have so far designed distributed learning and access
policies with provable bounds on regret. We now discuss the
relative performance of these policies, compared to the optimal
learning and access policies. This is accomplished by noting
a lower bound on regret for anyuniformly-good policy, first
derived in [4] for a general class of uniformly-good time-
division policies. We restate the result below.

Theorem 6 (Lower Bound [4]): For any uniformly good
distributed learning and access policyρ, the sum regret in
(2) satisfies

lim inf
n→∞

R(n;µ, U, ρ)

logn
≥

∑

i∈U-worst

U∑

j=1

∆(U∗, i)

D(µi, µj∗)
. (30)

The lower bound derived in [9] for centralized learning and
access holds for distributed learning and access considered
here. But a better lower bound is obtained above by consid-
ering the distributed nature of learning. The lower bound for
distributed policies is worse than the bound for the centralized
policies in (11). This is because each user independently learns
the channel availabilitiesµ in a distributed policy, whereas
sensing decisions from all the users are used for learning in a
centralized policy.

Our distributed learning and access policyρRAND matches
the lower bound on regret in (15) in the order(logn) but the
scaling factors are different. It is not clear if the regret lower
bound in (30) can be achieved by any policy under no explicit
information exchange and is a topic for future investigation.

B. Behavior with Number of Users

We have so far analyzed the sum regret under our policies
under a fixed number of usersU . We now analyze the behavior
of regret growth asU increases while keeping the number of
channelsC > U fixed.

Theorem 7 (Varying Number of Users): When the number
of channelsC is fixed and the number of usersU < C is
varied, the sum regret under centralized learning and access
ρCENT in (12) decreases asU increases while the upper bounds
on the sum regret underρRAND in (15) monotonically increases
with U .
Proof: The proof involves analysis of (12) and (15). To
prove that the sum regret under centralized learning and access
in (12) decreases with the number of usersU , it suffices to
show that fori ∈ U -worst channel,

∆(U∗, i)

D(µi, µU∗)

decreases asU increases. Note thatµ(U∗) and D(µi, µU∗)
decrease asU increases. Hence, it suffices to show that

µ(U∗)

D(µi, µU∗)

decreases withU . This is true since its derivative with respect
to U is negative.

For the upper bound on regret underρRAND in (15), whenU
is increased, the number ofU -worst channels decreases and
hence, the first term in (15) decreases. However, the second
term consisting of collisionsM(n) increases to a far greater
extent. 2

Note that the above results is for the upper bound on regret
under theρRAND policy and not the regret itself. Simulations in
Section VII reveal that the actual regret also increases withU .
Under the centralized schemeρCENT, asU increases, the number
of U -worst channels decreases. Hence, the regret decreases,
since there are less number of possibilities of making bad
decisions. However, for distributed schemes although this
effect exists, it is far outweighed by the increase in regret
due to the increase in collisions among theU users.

In contrast, the distributed lower bound in (30) displays
anomalous behavior withU since it fails to account for
collisions among the users. Here, asU increases there are
two competing effects: a decrease in regret due to decrease
in the number ofU -worst channels and an increase in regret
due to increase in the number of users visiting theseU -worst
channels.

VII. N UMERICAL RESULTS

We present simulations that vary the schemes and the
number of users and channels to verify the performance of
the algorithms detailed earlier. We considerC= 9 channels
(or a subset of them when the number of channels is varying)
with probabilities of availability characterized by Bernoulli
distributions with evenly spaced parameters ranging from0.1
to 0.9.

Comparison of Different Schemes: Fig.2a compares the
regret under the centralized and random allocation schemes in
a scenario withU = 4 cognitive users vying for access to the
C = 9 channels. The theoretical lower bound for the regret
in the centralized case from Theorem 2 and the distributed
case from Theorem 6 are also plotted. The upper bounds on
the random allocation scheme from Theorem 4 is not plotted
here, since the bounds are loose especially as the number of
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usersU increases. Finding tight upper bounds is a subject of
future study.

As expected, centralized allocation has the least regret.
Another important observation is the gap between the lower
bounds on the regret and the actual regret in both the dis-
tributed and the centralized cases. In the centralized scenario,
this is simply due to using thegMEAN statistic in (34) instead
of the optimalgOPT statistic in (5). However, in the distributed
case, there is an additional gap since we do not account for
collisions among the users. Hence, the schemes under con-
sideration areO(log n) and achieve order optimality although
they are not optimal in the scaling constant.

Performance with Varying U and C: Fig.3a explores the
impact of increasing the number of secondary usersU on the
regret experienced by the different policies while fixing the
number of channelsC. With increasingU , the regret decreases
for the centralized schemes and increases for the distributed
schemes, as predicted in Theorem 7. The monotonic increase
of regret under random allocationρRAND is a result of the
increase in the collisions asU increases. While the monotonic
decreasing behavior in the centralized case is because as the
number of users increases, the number ofU -worst channels
decreases resulting in lower regret. Also, the lower bound
for the distributed case in (30) initially increases and then
decreases withU This is because asU increases there are
two competing effects: decrease in regret due to decrease in
number ofU -worst channels and increase in regret due to
increase in number of users visiting theseU -worst channels.

Fig.3b evaluates the performance of the different algorithms
as the number of channelsC is varied while fixing the number
of usersU . The probability of availability of each additional
channel is set higher than those already present. Here, the
regret monotonically increases withC in all cases. When the
number of channels increases along with the quality of the
channels, the regret increases as a result of an increase in the
number ofU -worst channels as well as the increasing gap in
quality between theU -best andU -worst channels.

Also, the situation where the ratioU
C

is fixed to be0.5
and both the number of users and channels along with their
quality increase is considered in Fig.3c. As the number of
users increases the regret increases as the number of channels
C and their quality are both increasing. Once again, this is
in agreement with theory as the number ofU -worst channels
increases asU andC increase while keepingU

C
fixed.

Collisions and Learning: Fig.2c verifies the logarithmic
nature of the number collisions under the random allocation
schemeρRAND. Additionally, we also plot the number of col-
lisions underρRAND in the ideal scenario when the channel
availability statisticsµ are known to see the effect of learning
on the number of collisions. The low value of the number
of collisions obtained under known channel parameters in
the simulations is in agreement with theoretical predictions,
analyzed asUE[Υ(U,U)] in Lemma 2. As the number of
slots n increases, the gap between the number of collisions
under the known and unknown parameters increases since the
former converges to a finite constant while the latter grows as
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Fig. 4. Simulation Results. Probability of Availabilityµ =
[0.1, 0.2, . . . , 0.9]. No. of slots where user has best channel vs. user.U = 4,
C = 9, n = 2500 slots,1000 runs,ρRAND.

O(log n). The logarithmic behavior of the cumulative number
of collisions can be inferred from Fig.2a. However, the curve
in Fig.2c for the unknown parameter case appears linear inn
due to the small value ofn.

Difference between gOPT and gMEAN: Since the statisticgMEAN

used in the schemes in this paper differs from the optimal
statisticgOPT in (5), a simulation is done to compare the perfor-
mance of the schemes under both the statistics. As expected, in
Fig.2b, the optimal scheme has better performance. However,
the use ofgMEAN enables us to provide finite-time bounds, as
described earlier.

Fairness: One of the important features ofρRAND is that
it does not favor any one user over another. Each user has
an equal chance of settling down in any one of theU -best
channels. Fig.4 evaluates the fairness characteristics ofρRAND.
The simulation assumesU = 4 cognitive users vying for
access toC = 9 channels. The graph depicts which user
asymptotically gets the best channel over1000 runs of the
random allocation scheme. As can be seen, each user has
approximately the same frequency of being allotted the best
channel indicating that the random allocation scheme is indeed
fair.

VIII. C ONCLUSION

In this paper, we proposed novel policies for distributed
learning of channel availability statistics and channel access
of multiple secondary users in a cognitive network. The first
policy assumed that the number of secondary users in the
network is known, while the second policy removed this
requirement. We provide provable guarantees for our policies
in terms of sum regret. Combined with the lower bound on
regret for any uniformly-good learning and access policy, our
first policy achieves order-optimal regret while our second
policy is also nearly order optimal. Our analysis in this paper
provides insights on incorporating learning and distributed
medium access control in a practical cognitive network.

The results of this paper open up an interesting array of
problems for future investigation. Our assumptions of an i.i.d.
model for primary user transmissions and perfect sensing at
the secondary users need to be relaxed. Our policy allows for
an unknown but fixed number of secondary users, and it is of
interest to incorporate users dynamically entering and leaving

the system. Moreover, our model ignores dynamic traffic at
the secondary nodes and extension to a queueing-theoretic
formulation is desirable.
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APPENDIX

A. Proof of Theorem 2

The result in (13) involves extending the results of [11,
Thm. 1]. DefineTi(n):=

∑U

j=1 Ti,j(n) as the number of times
a channeli is sensed inn rounds for all users. We will show
that

E[Ti(n)] ≤
∑

k∈U-best

[
8 logn

∆(k∗, i)2
+ 1 +

π2

3

]
, ∀i ∈ U -worst.

(31)
We have

P[Tx. in i in nth slot] = P[g(U∗;n) ≤ g(i;n)],

=P[A(i;n) ∩ (g(U∗;n) ≤ g(i;n))]

+ P[Ac(i;n) ∩ (g(U∗;n) ≤ g(i;n))],

where
A(i;n):=

⋃

k∈U-best

(g(k;n) ≤ g(i;n))

is the event that at least one of theU -best channels hasg-
statistic less thani. Hence, from union bound we have

P[A(i;n)] ≤
∑

k∈U-best

P[g(k;n) ≤ g(i;n)].

We have forC > U ,

P[Ac(i;n) ∩ (g(U∗;n) ≤ g(i;n))] = 0,

Hence,

P[Tx. in i in nth round] ≤
∑

k∈-best

P[g(k;n) ≤ g(i;n)].

On the lines of [11, Thm. 1], we have∀k, i :
k is U -best, i is U -worst

n∑

l=1

I[g(k; l) ≤ g(i; l)] ≤
8 logn

∆(k∗, i)2
+ 1 +

π2

3
.

Hence, we have (31). For the bound on regret, we can break
R in (2) into two terms

R(n;µ, U, ρCENT) =
∑

i∈U-worst

[ 1
U

U∑

l=1

∆(l∗, i)
]
E[Ti(n)]

+
∑

i∈U-best

[ 1
U

U∑

l=1

∆(l∗, i)
]
E[Ti(n)].
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For the second term, we have

∑

i∈U-best

[ 1
U

U∑

l=1

∆(l∗, i)
]
E[Ti(n)]

≤ E[T ∗(n)]
∑

i∈U-best

[ 1
U

U∑

l=1

∆(l∗, i)
]
= 0,

whereT ∗(n):= max
i∈U-best

Ti(n). Hence, we have the bound.

B. Proof of Proposition 1

For convenience, letTi(n) :=
∑U

j=1 Ti,j(n), Vi(n) :=∑U

j=1 Vi,j(n). Note that
∑C

i=1 Ti(n) = nU, since each user
selects one channel for sensing in each slot and there areU
users. From (3),

R(n) =n

U∑

i=1

µ(i∗)−

C∑

i=1

µ(i)E[Vi(n)],

≤
∑

i∈U-best

µ(i)(n− E[Vi(n)])

≤µ(1∗)(nU −
∑

i∈U-best

E[Vi(n)]) (32)

=µ(1∗)(E[M(n)] +
∑

i∈U-worst

E[Ti(n)]), (33)

where Eqn.(32) uses the fact thatVi(n) ≤ n since total number
of sole occupancies inn slots of channeli is at mostn, and
Eqn.(33) uses the fact thatM(n) =

∑
i∈U-best(Ti(n)−Vi(n)).

For the lower bound, since each user selects one channel
for sensing in each slot,

∑C

i=1

∑U

j=1 Ti,j(n) = nU . Now
Ti,j(n) ≥ Vi,j(n).

R(n;µ, U, ρ) ≥
1

U




U∑

k=1

U∑

j=1

C∑

i=1

∆(U∗, i)E[Ti,j(n)]


 ,

≥

U∑

j=1

∑

i∈U-worst

∆(U∗, i)E[Ti,j(n)].

C. Proof of Lemma 2

Although, we could directly compute the time to absorption
of the Markov chain, we give a simple boundE[Υ(U,U)] by
considering an i.i.d process over the same state space. We term
this process as a genie-aided modification of random allocation
scheme, since this can be realized as follows: in each slot, a
genie checks if any collision occurred, in which case, a new
random variable is drawn from Unif(U) by all users. This is
in contrast to the original random allocation scheme where a
new random variable is drawn only when the particular user
experiences a collision. Note that forU = 2 users, the two
scenarios coincide.

For the genie-aided scheme, the expected number of slots to
hit orthogonality is just the mean of the geometric distribution

∞∑

k=1

k(1− p)kp =
1− p

p
<∞, (34)

wherep is the probability of having an orthogonal configura-
tion in a slot. This is in fact the reciprocal of the number of
compositions of U [24, Thm. 5.1], given by

p =

(
2U − 1

U

)−1

. (35)

The above expression is nothing but the reciprocal of number
of waysU identical balls (users) can be placed inU different
bins (channels): there are2U − 1 possible positions to form
U partitions of the balls.

Now for the random allocation scheme without the genie,
any user not experiencing collision doesnot draw a new
variable from Unif(U). Hence, the number of possible config-
urations in any slot is lower than under genie-aided scheme.
Since there is only one configuration satisfying orthogonality8,
the probability of orthogonality increases in the absence of the
genie and is at least (35). Hence, the number of slots to reach
orthogonality without the genie is at most (34). Since in any
slot, at mostU collisions occur, (17) holds.

D. Proof of Lemma 3

Let cn,m:=
√

2 log n

m
.

Case 1: ConsiderU = C = 2 first. Let

A(t, l):={gMEAN
j (1∗; t− 1) ≤ gMEAN

j (2∗; t− 1), T ′
j(t− 1) ≥ l}.

On lines of [11, Thm. 1],

T ′(n) ≤ l +

n∑

t=2

I[A(t, l)],

≤ l +

∞∑

t=1

t∑

m+h=l

I
(
X̄1∗,j(h) + ct,h ≤ X̄2∗,j(m) + ct,m

)
.

The above event is implied by

X̄1∗,j(h) + ct,h ≤ X̄2∗,j(h) + ct,h+m

sincect,m > ct,h+m.
The above event implies at least one of the following events

and hence, we can use the union bound.

X̄1∗,j(h) ≤ µ1∗ − ct,h,

X̄2∗,j(m) ≥ µ2∗ + ct,h+m,

µ1∗ < µ2∗ + 2ct,h+m.

From the Chernoff-Hoeffding bound,

P[X̄1∗,j(t) ≤ µ1∗ − ct,h] ≤ t−4,

P[X̄2∗,j ≥ µ2∗ + ct,h+m] ≤ t−4,

and the event thatµ1∗ < µ2∗ + 2ct,h+m implies that

h+m <

⌈
8 log t

∆2
1∗,2∗

⌉
.

Since
∞∑

t=1

t∑

m=1

t∑

h=1

2t−4 =
π2

3
,

8since all users are identical for this analysis.
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,

E[T ′(n;U = C = 2)] ≤
8 logn

∆2
1∗,2∗

+ 1 +
π2

3
.

Case 2: For min(U,C) > 2, we have

T ′(n) ≤ U
U∑

a=1

C∑

b=a+1

n∑

m=1

I(gMEAN
j (a∗;m) < gMEAN

j (b∗;m)),

wherea∗ and b∗ represent channels withath and bth highest
availabilities. On lines of the result forU = C = 2, we can
show that

n∑

m=1

EI[gMEAN
j (a∗;m) < gMEAN

j (b∗;m)] ≤
8 logn

∆2
a∗,b∗

+ 1 +
π2

3
.

Hence, (18) holds.

E. Proof of Theorem 3

Define the good event as all users having correct top-U
order of theg-statistics, given by

G(n):=

U⋂

j=1

{Top-U entries ofgj(n) are same as inµ}.

The number of slots under the bad event is

n∑

m=1

I[Gc(m)] = T ′(n),

by definition of T ′(n). In each slot, either a good or a bad
event occurs. Letγ be the total number of collisions inU -
best channels between two bad events, i.e., under a run of
good events. In this case, all the users have the correct top-U
ranks of channels and hence,

E[γ|G(n)] ≤ UE[Υ(U,U)] <∞,

whereE[Υ(U,U)] is given by (17). Hence, each transition
from the bad to the good state results in at mostUE[Υ(U,U)]
expected number of collisions in theU -best channels. The
expected number of collisions under the bad event is at most
UE[T ′(n)]. Hence, (19) holds.

F. Proof of Lemma 4

Under C(n;U), a U -worst channel is sensed only if it is
mistaken to be aU -best channel. Hence, on lines of Lemma 1,

E[Ti,j(n)|C(n;U)] = O(log n), ∀i ∈ U -worst, j = 1, . . . , U.

For the number of collisionsM(n) in the U -best channels,
there can be at mostU

∑a

k=1 ξ(n; k) collisions in theU -best
channels wherea := maxj=1,...,U Ûj is the maximum estimate
of number of users. Conditioned onC(n;U, ), a ≤ U , and
hence, we have (24).

G. Proof of Proposition 2

Define the good event as all users having correct top-U
order, given by

G(n):=

U⋂

j=1

{Top-U entries ofgj(n) are same as inµ}.

The number of slots under the bad event is
n∑

m=1

I[Gc(m)] = T ′(n),

by definition of T ′(n). In each slot, either a good or a bad
event occurs. Letγ be the total number of collisions ink-best
channels between two bad events, i.e., under a run of good
events. In this case, all the users have the correct top-U ranks
of channels and hence,

γ|G(n)
st

≤ UΥ(U, k),

The number of collisions under the bad event is at mostT ′(n).
Hence, (27) holds.

H. Proof of Lemma 6

We are interested in

P[Cc(n);U ] = P[∪Uj=1Û
EST
j (n) > U ],

= P[

n⋃

m=1

U⋃

j=1

{ΦU,j(m) > ξ(n;U)}],

= P[ max
j=1,...,U

ΦU,j(n) > ξ(n;U)],

whereΦ is given by (20). ForU = 1, we haveP[Cc(n);U ] = 0
since no collisions occur.

Using (27) in Proposition 2,

P[
k

max
j=1

Φk,j(n) > ξ(n; k)]

≤ P[kΥ(U, k)(T ′(n) + 1) > ξ(n; k)]

≤ P[k(T ′(n) + 1) >
ξ(n; k)

αn

] + P[Υ(U, k) > αn]

≤
kαn(E[T

′(n)] + 1)

ξ(n; k)
+ P[Υ(U, k) > αn], (36)

using Markov inequality. By choosingαn = ω(1), the second
term in (36), viz.,P[Υ(U, k) > αn] → 0 as n → ∞, for
k ≥ U . For the first term, from (26) in Lemma 5,E[T ′(n)] =
O(log n). Hence, by choosingαn = o(ξ∗(n; k)/ logn), the
first term decays to zero. Sinceξ∗(n;U) = ω(logn), we can
chooseαn satisfying both the conditions. By lettingk = U in
(36), we haveP[Cc(n);U ]→ 0 asn→∞, and (28) holds.
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